
50 shades of Scalability Sébastien Mosser
May 30th, 2022
CSER Spring Meeting Keynote

Sébastien Mosser
• 22-…: Associate Professor, McMaster Univ.

• 19-21: “Professeur”, UQAM

• 12-18: “Maître de Conférences”, Univ. Côte d’Azur

• 11-12: Research Scientist, SINTEF

• 10-11: Postdoc, Inria Lille Nord-Europe

• 07-10: PhD student, Université de Nice

Snowboarding since 1995. Composing things since 2007.

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 3

The ultimate question

Does it scale*?

* please stop asking this question during PhD or MSc defenses, it’s a terrible one.

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 4

Scalability?

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 5

So Scalability derives from “Growth”

Evolution
of Size

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 6

What does “size” mean in Soft. Eng?

In this sketch, Norway competes with the USA, and eventually
concludes that they have the biggest alphabet (with Æ, Ø, Å)

This talk is
not all about
reading the
dictionnary!

3
1 2

Composition in a nutshell

Composition at scale

Scaling Composition
|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 8

1Composition in a nutshell
Like Mr Jourdain, you’re composing without knowing it

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 9

Example of Industrial Collaboration: MERMAID

• Project started in 2002 by Guust Nolet
• Acoustic passive monitoring of oceans
• Now 3rd generation buoys deployed

Pictures by OSEAN & Geoazur |29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering

Projet MERMAID (ERC Advanced Guust Nolet)

10

Running Software, 20,000 leagues under the seas

Ok, but where is the composition? Where is the “scale”?

Pictures by Geoazur

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 11

Running Software, 20,000 leagues under the seas

• MERMAIDs are expensive and often idle

• Oceans are full of challenges (80% unexplored)

• Monitoring whales, plastic pollution, salinity, …

• Compose “data collection campaigns”

• A MERMAID is not a smartphone

• Legacy ad hoc code (no operating system)

• Hostile environment (salt, pressure), energy, …

“Can you build an AppStore for
our MERMAIDs?”

- G. Nolet, 2016
|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 12

Software Composition by example

Merge Project

TABLE III
MELA CODE COMPARED TO GENERATED CODE.

MeLa code C

1 ContinuousAcqMode Simple :
2

3 Input :
4 s e n s o r : Hydrophone ;
5 data : x [1 0] ;
6

7 V a r i a b l e s :
8 i n t y ;
9

10 RealTimeSequence :
11 y = mean (x , 1 0) ;
12 endseq ;
13

14 endmode ;

1 / / S e ns or t a s k � hydrophone . c
2 void h y d r o p h o n e t a s k (void * p a r a m e t e r s){
3 w a i t E x t I n t (a d c o n v e r t e r . d r d y e i n t i d) ;
4 x s i m p l e f i l l�>d a t a [x s i m p l e f i l l�>i] = r e a d s a m p l e () ;
5 x s i m p l e f i l l�>i += 1 ;
6 i f (x s i m p l e f i l l�>i s F u l l) {
7 i f (x s i m p l e f i l l == &x s i m p l e b u f f 1) {
8 x s i m p l e p r o c e s s = &x s i m p l e b u f f 1 ;
9 x s i m p l e f i l l = &x s i m p l e b u f f 2 ;

10 } e l s e {
11 x s i m p l e p r o c e s s = &x s i m p l e b u f f 2 ;
12 x s i m p l e f i l l = &x s i m p l e b u f f 1 ;
13 }
14 s e m a p h o r e S i g n a l (s imple Semaphore) ;
15 }
16 }
17

18 / / G loba l v a r i a b l e s � g l o b a l . c
19 i n t 3 2 a r r a y t * x s i m p l e f i l l ;
20 i n t 3 2 a r r a y t * x s i m p l e p r o c e s s ;
21 i n t 3 2 t x s imple 1 [1 0] ;
22 i n t 3 2 a r r a y t x s i m p l e b u f f 1 = {x s imple 1 , 0 , 10 , f a l s e } ;
23 i n t 3 2 t x s imple 2 [1 0] ;
24 i n t 3 2 a r r a y t s i m p l e x b u f f 2 = {x s imple 2 , 0 , 10 , f a l s e } ;
25

26 / / P r o c e s s i n g t a s k � s i m p l e t a s k . c
27 s t a t i c i n t 3 2 t y ;
28 void s i m p l e t a s k (void * p a r a m e t e r s){
29 whi le (1) {
30 semaphoreWai t (s imple Semaphore) ;
31 y = mean (x s i m p l e p r o c e s s , 1 0) ;
32 }
33 }

and that several applications can be deployed on the same float
and share its functionalities (C3).

D. Reduction of expertise
When an application is written in MeLa, the developer does

not have to consider the control board and the acquisition
board. The development of acquisition modes does not require
to think about embedded software concerns, for example
defining tasks, their initialization, their execution priority,
the way they are started and stopped or the synchronization
between tasks receiving data from sensors and tasks processing
the data. Thus, the MeLa language hides several embedded
software concerns.

Table III illustrates the reduction of expertise given by the
MeLa language compared to the generated code. This table
presents the generation of an acquisition mode into a sensor
task and a processing task, as shown in figure 2. For that
purpose, we use a simple application that reads data from the
hydrophone and computes an average. The Input part of the
MeLa code generates the sensor task. This task waits for data
from the hydrophone. When the hydrophone is ready to send
data, it sends a signal to the processor (a hardware interrupt)
that triggers the execution of the sensor task (line c3)3.

The input variable (line m5) is generated as two array
of data (lines c19-c24). One is filled by the sensor task
(line c4), while the other one is processed by the processing

3Reference to line numbers are given with an m for the MeLa code and a
c for the C code (e.g., m1, c1).

task (line c31). When the x_simple_fill array is full
(line c6), the array is switched with x_simple_process
(lines c7-c13) and the execution of the processing task is
triggered with a signal (line c14). The RealTimeSequence
part of the acquisition mode is converted in a processing task
(lines c28-c33), that is waiting for the sensor task (line 30).
The Variables part is converted to local variables contained
in the task (line 27). In the application written in MeLa, the
developer only defines the input sensor, the input variable,
and the algorithm to use. She can focus on the behavior of
applications rather than on embedded software concerns.

Another way to estimate the reduction expertise is to
compare the amount of code to write in MeLa, with the amount
of generated code, that would be written manually. Looking
at the total number of lines of the composed application, one
has to write 90 lines of code in MeLa, while 600 lines must
be written to develop the application with the C language.

By hiding embedded software concerns and reducing the
amount of code to write, the MeLa language allows oceanogra-
phers to develop applications for the float by themselves (C1).
Moreover, generating a code tailored for the MeLa applications
helps to produce efficient and reliable applications (C2). For
example, in MeLa the sensors are automatically shut down
when they are not used. In C, this behavior must be written
by the developer.

Marine
biologist

Geoscientist

Hardware engineers

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 13

Software Composition matters! (2010-…)

• Like Mr Jourdain, you’re composing without knowing it:
• Modularizing code (e.g., packages, functions)

• Configuring the Linux kernel

• Weaving persistance into a Spring application

• Pulling code from a Git repository

• Deploying & invoking micro-services

• …

But the “size” depends of the application domain!

Divide to conquer
Compose to vanquish

Intermediate
conclusions #1

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 15

2Composition at Scale
Ok, composition is banal. But “does it scale”?

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 16

Requiem for Aspect-Oriented Programming

[Fowler (quoting Johnson),
2003, IEEE Software]

4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

DESIGN

By doing this, he made it so that the
database schema was no longer archi-
tectural. I see this as an entirely good
thing because it let us better handle
change.

At a fascinating talk at the XP 2002
conference (http://martinfowler.com/
articles/xp2002.html), Enrico Zani-
notto, an economist, analyzed the un-
derlying thinking behind agile ideas in
manufacturing and software develop-
ment. One aspect I found particularly
interesting was his comment that irre-
versibility was one of the prime drivers
of complexity. He saw agile methods, in
manufacturing and software develop-
ment, as a shift that seeks to contain
complexity by reducing irreversibility—
as opposed to tackling other complex-
ity drivers. I think that one of an archi-
tect’s most important tasks is to remove
architecture by finding ways to elimi-
nate irreversibility in software designs.

Here’s Johnson again, this time in
response to an email message I sent
him:

One of the differences between building
architecture and software architecture is
that a lot of decisions about a building
are hard to change. It is hard to go back
and change your basement, though it is
possible.

There is no theoretical reason that any-
thing is hard to change about software.
If you pick any one aspect of software
then you can make it easy to change,
but we don’t know how to make every-
thing easy to change. Making something
easy to change makes the overall system
a little more complex, and making
everything easy to change makes the en-
tire system very complex. Complexity is
what makes software hard to change.
That, and duplication.

My reservation of Aspect-Oriented Pro-
gramming is that we already have fairly
good techniques for separating aspects
of programs, and we don’t use them. I
don’t think the real problem will be
solved by making better techniques for
separating aspects. We don’t know what
should be the aspects that need separat-
ing, and we don’t know when it is worth
separating them and when it is not.

Software is not limited by physics, like
buildings are. It is limited by imagina-
tion, by design, by organization. In
short, it is limited by properties of peo-
ple, not by properties of the world. “We
have met the enemy, and he is us.”

Martin Fowler is the chief scientist for ThoughtWorks, and In-
ternet systems delivery and consulting company. Contact him at
fowler@acm.org.

• AOP was supposed to “solve” the
separation of concerns issues

• Scaling the integration of concerns

• Automating the weaving process

• AspectJ is an engineering jewel

• This was not what needed to scale!

• Conflict & Design were the real
issues!

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 17

Let’s look at the Linux kernel
• A modern version of the kernel contains ~1,500 features

• Combinatorial worst case:

• There are atoms in the visible universe

• Example of linux engineering at scale: Coccinelle (rewriting rules)

21,500(≈ 10452)

1080

If you’re an astrophysicist, you’re dealing with objects that are way simpler
than the ones software engineers use on a daily basis — J.-M. Jézéquel

“

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 18

Program rewriting in a nutshell
• Code rewriting in a nutshell:

•

• With a rule and a program, the rewritten one

• Rules are composable by definition:

•

• Size matters:

• Linux 20 millions of lines of codes

• 7k commits /month

Rule : Program → Program
ρ P P′ = ρ(P)

ρ12(P) = (ρ1 ∙ ρ2)(P) = ρ1(ρ2(P))

≈

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 19

Exemple of rule: kmalloc to kzalloc

…
x = kzalloc(sizeof(*a), 0);
…

…
x = kmalloc(sizeof(*a), 0);
memset(a, 0, sizeof(*a))
…

Ri

P

P′

Ri(P)

Coccinelle used separation
of concerns to separate

each rewriting rule

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 20

Scaling issue: Rule composition

• Running coccinelle on 20M LoCs is surprisingly fast

• make coccicheck takes 190 minutes in average (35 sequential rewritings)

• We’re talking about graph pattern matching at scale!

• Software engineering is all about trade-offs:

• Coccinelle does not look for fixed-points invariants, or conflicts.

• No guarantee that rules commute: R1(R2(P)) =? R2(R1(P))

59! ≈ 1080

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 21

Composition at scale: a new operator!
• Two objectives

• Stay in the 190 minutes execution window

• Identify composition conflict

Benjamin Benni
PhD (2019)
MSc (2016)

12 B. Benni et al

�2

�1

C

�n

… …

conflict? C’ = iso(C , SP)

1

2

n

… …

� : ∃ ∂ ∈ ∆ , ∂ ≠ ∅

C’

� (c, �1(c))

� (c, �2(c))

� (c, �n(c))

false

� (c, �1(c))

� (c, �2(c))

� (c, �n(c))

C Code

�1 Rewriter

Set of actions
(delta)

n
n

1

2

�2

�1

�n

FIGURE 6 Experimental process of the linux use-case

0

50

100

150

200

0d
4a
66
08
f6
8c

13
4b
d9
02
86
d

15
b4
dd
79
81
49

25
51
a5
30
53
de

25
a3
ba
61
06
09

2f
53
fb
d5
21
82

38
65
16
83
aa
98

4e
fe
37
f4
c4
ef

50
03
ae
1e
73
5e

70
07
ba
63
0e
4a

78
10
9d
23
0b
79

82
7e
d2
b0
6b
05

84
7e
cd
3f
a3
11

96
80
1b
35
f0
7e

bc
e1
a6
51
72
d1

bf
d4
0e
af
f5
ab

ce
8d
10
15
a2
b8

e7
1f
f8
9c
71
2c

ec
66
3d
96
7b
22

Commit

C
om

pu
tin

g
tim

e
in

 m
in

ut
es

FIGURE 7 Execution time of our proposition in minutes (the line is the average time)

Detecting previously silenced semantic conflicts.

Table 3 lists the interactions detected in the experimental dataset. Out of 19 versions, 7 (> 36%) presented semantic con�icts that were not
detected before. The table is ordered in chronological order, meaning that these interactions come-and-go, and are not solved once and for all. From
a software engineer point of view, it is interesting to notice how the process helps to debug the rule set. Among 35 fully-functionning semantic
patches available, now the developers only have to focus on two of them: alloc_cast and memdup. They also know the precise location(s) in their
code where these two rules con�icts.

According to Coccinelle documentation, the alloc_cast semantic patch performs the following operation: “Remove casting the values returned
by memory allocation functions like kmalloc, kzalloc, kmem_cache_alloc, kmem_cache_zalloc etc.”6. The memdup patch is self-described in its
implementation7. It avoids to reimplement the behavior of the kmemdup kernel-function at multiple locations in the kernel (which implies kmalloc

and kzalloc). By reading the documentation, one might expect an interaction as both rules target the memory allocation, and it is interesting to
notice how �ne-grained the issue is. These two rules only con�ict when applied to a very speci�c code subset in the kernel, even if their de�nition
might con�ict by essence.

6https://bottest.wiki.kernel.org/coccicheck
7https://github.com/coccinelle/coccinellery/blob/master/memdup/memdup.cocci
8drivers/gpu/drm/amd/powerplay/hwmgr/vega12_processpptables.c
9drivers/staging/media/atomisp/pci/atomisp2/css2400/sh_css_�rmware.c

Validated on 19 versions of Linux
Quicker than sequential (in average)

Identified 2 conflicting rules

[ICSR, 2018]

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 22

Another example: the RELAI Project
• Respectful and ExpLainable AI to support struggling people and

mental health practitionners

• Mental illness is a leading cause of disabilities in Canada

• 4.9M of Canadians (15yo+) needed mental health care (2015)

• 33% of Ontario’s students (12-17) reported a need to talk

• And COVID-19 did not help…

• Objectives of the project:

• Collect an annotated corpus of textual conversations from
patients received by ER (Switwerland, Belgium)

• Train an NLP model to support suicidal risk detection
Dr M.-J. Meurs, PI

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 23

Where is the scale issue here?

Patient

NLP
Researchers

RELAI COLLECT
PIPELINE

!

"#

Practician
classifier

User

“weak”
annotations

RELAI
predictive

model

Ethics certification
accross three countries!

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering

•Need to obtain three different ethics committees certifications

• (Super) Long & (Super) tedious process (15 days meeting in ", early 2020).

•Looks like a classical “certification” process

•Justification diagrams!

• Insights (ongoing):

•Strengthen the DMP

•Give confidence to defend it

•Even if not executable!

24

Convincing ethics committees! C. Pulgar
MASc (21-…)

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 25

Supporting developers!
public void method store(Set<Entry> dataset) {
 Database db = RemoteStorage("...");
 for(Entry e: dataset) {
 db.save(e)
 }
}

Error:
Entry ‘e’ is not
anonymized

Enhance tooltips and error handlers in IDEs
with composable requirements that are

driven by external & evolving concerns

$

Scaling is not always
about BIG numbers

Intermediate
conclusions #2

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 27

3Scaling Composition
Composition at scale is not enough!

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 28

Legacy needs to scale
• Performance related issues:

In Familiar, , but if , then

• Operators can be legacy code: Familiar is 241k LoCs of Java.

• Git merge is another “black box” legacy operator (1 function, 4K LoCs of C).

• Algebraic properties of composition operators helps to scale

• Commutativity allows us to swap arguments and save hours of computation (%).

• Idempotency avoid useless composition, …

μ(A, B)
tAB

≡ μ(B, A)
tBA

|A | > |B | tAB ≫ tBA

[JOT, 2020]

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 29

Scaling composition: “History”

Characterizing Black-box Composition Operators · 11

Figure 4 – Making a model composable using interface realization

Listing 2 – Example of properties described with the DSL

1 /* Property to be associated to an operator */
2 property associative(op: Operator , =: Relation , {a,b,c}):
3 op(op(a,b), c) = op(a, op(b,c))
4

5 /* Property to be associated to a relation */
6 property transitive (=: Relation , {a,b,c}):
7 a = b && b = c && a = c

4.3 Ensuring properties on composition operators
Thanks to the language used to model the elements and the extensible framework
generated concerning operators and relations, we now reach a state where one can
reason about the artifacts at the algebraic level. Using the same DSL as the one
used to model concepts, relations and properties, one can design properties, and bind
these properties to operators and relations. Thanks to this approach, we provide in a
standard library a definition of the properties {P1, . . . P8} that address the classical
needs of software developers. A developer can also use the same mechanism to design
a domain property, specific for domain-requirements (List. 2).

To model properties, we used a functional approach. A given property is then
defined as a function that takes as input elements, operators and relations and assembles
them into a boolean function. We show in List. 2 an example of the associative

property (P3) for an operator. As stated in Sec. 3, it is also important to ensure
properties on the designed relations, as an operator assessment mechanism entirely
relies on the assumption that the relations conform to their algebraic definitions. It
is then possible to express properties to be associated with relations using the same
approach in the language (e.g., relation transitivity in List. 2). In both cases, a
property takes as input a set of free variables, being operators, relations, or model
elements.

Defining properties according to free definition allows us to define a standard library
of properties, without being tied to a particular implementation. We use binding
mechanisms to bind the free variables exposed (by the definition) to concrete elements.

Journal of Object Technology, vol. 19, no. 2, 2020

14 · Benni et al.

Listing 5 – Lightweight modelling of Familiar feature models

1 import stdlib.ace
2 model fm
3

4 trait NamedElement { required name: String }
5 concept FM <: NamedElement { required contents: String }
6

7 relation equivalence: FM x FM
8 operator union: FM x FM -> FM
9

10 declare FM:: union as associative with equivalence
11 declare FM:: union as commutative with equivalence

application of the equivalence relation, and the second class (l.11-21) targets the
application of the merge union operator. In both cases, we leverage a Familiar
shell to transform the serialized model into a Familiar one, and then rely on the
language API to achieve the required task. The equivalence is classically delegated to
a comparison framework (e.g., List. 6, line 8). The internal merge operator defined
by Familiar is configured according to our needs to build the merged model, which is
then serialized into our FM concept (List. 6, line 23).

5.1.3 Generating Feature Models instances

The last effort required by the developer is to fill in the code skeleton that will be used
to generate instances of feature models used to feed the characterization benchmark. It
is necessary to create two different generators: the associativity property is defined on
FM

3 and the commutativity one on FM
2. However, both rely on the same principles,

so we here only describe the binary generator. As the merge union operator works to
create a family of products, benchmarking it with totally random and disjoint models
would have little if no interest.

It is out of the scope of this paper to describe in detail the structure of a feature
model and how to generate one from scratch, and we only give here an intuition of the
process. As a feature model is a tree-based structure, the generation is done recursively.
Sub-trees are generated, and we randomly chose a way to assemble the sub-trees. This
method allows one to obtain a base feature model b. Then, we randomly select several
alterations to be applied to b to derive a similar feature model. The idea here is to
generate almost equivalent trees, that will stress the merge algorithm.

5.2 Validation on Git merge properties
To highlight that our proposition is not tied-up to the Familiar use-case or any partic-
ular application domain, we applied it on the Git merge operation, a frequent operation
that happens in distributed code versioning systems. When multiple developers worked
on the same file concurrently, the version control system has to build the consolidated
version of the file that integrates all the modifications using a merge operation. From
our point-of-view this merge operation is a legacy composition operator that composes
modifications together, checks for eventual conflicts, and applies these modifications
on a codebase to yield an updated one.

Journal of Object Technology, vol. 19, no. 2, 2020

Properties
as

assertions

Operator modelling

Property-based
testing approach

Validated on Familiar and Git

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 30

Stop reinventing the wheel

• Remember the Linux rewriting study?

• Coccinelle is not the only rewriting tool out there!

• Examples of other modern rewriting aproaches:

• Fixing energy-efficiency anti-patterns in Android apps [ICSR, 2018]

• Fixing good pratices violations in Docker [SAC, 2018]

• Application domains differs

• But in essence, composition verification and order-indepence do not change

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 31

Scaling Composition: Reusability
• Sort the wheat from the chaff:

• What is domain-specific? What is a composition-specific?

• Current work:

• Reverse-engineering micro-services architectures & the LLVM compiler

apply : AST × Pn
< → AST

p, [ρ1, …, ρn] ↦ Let p2.n = (∙n
i=2φi)(p), p′ = φ1(p2.n), χ1(p2.n, p′)

Let ρ = (φ, χ) ∈ (Φ × X) = P, (φ : AST → AST) ∈ Φ
χ : AST × AST → + ∈ X, ∀p ∈ AST, χ(p, φ(p))

iso : AST × Pn → AST
p, {ρ1, …, ρn} ↦ piso = p ⊕ (;ni=1 (φi(p) ⊖ p)), ∧n

i=1 χi(p, piso)

2 x [SAC, 2018]

This is not about cheating to increase your h-index, or a hammer-nail situation.
This is about finding the right abstraction, and demonstrating its rightness

“The devil is (still) in the details”

[ICSOC, 2020], [SPLC, 2020]

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering

Considering two strings a and b, calling a.similarity(b) re-
turns a real value (2 [0, 1]) to measure the semantic similarity
between the two strings, the higher the better. For each back-
log, we apply a graph transformation that flatten the graph into
triples (p, A, e) 2 T , where p is a persona, e an entity, and A

the set of actions that p perform on e, whatever the story. Then,
we define a similarity operator s : T ⇥ T ! R as the sum of
spaCy’s similarities for each string involved in the two triples.
Personas and entities are scalar values, so their similarity is
immediate using spaCy. As each triple contains a set of actions,
we have to normalize the similarities between the elements in
each set of actions to produce this value. As a consequence the
value returned by s is a real number in [0, 3].

Validation experiment. Using our reference dataset the graph
transformation produced 2, 973 triples out of the 1, 671 stories.
There are O(n2) pairs of triples, leaving us with an exploration
space of more than eight million comparisons. We applied three
heuristics for the execution of the similarity computation: (i) we
did not compute intra-backlog comparisons, (ii) we relied on
the commutativity of the s operator to only compute half of the
measurements, and (iii) we parallelized the computation over
40 processors. In the end, it left us with 4, 114, 765 measure-
ments, taking close to 122 CPU hours of computation using
the Compute Canada cluster (9.3 measurements/second/proc
on average). This approach supports the incremental definition
of backlogs: adding new stories means only computing the
similarity for the impacted subset of triples without changing
anything for the already computed ones, and in the worst case,
analyzing the complete models for 22 product took three hours
in a parallel environment, making it possible to run such an
analysis as a weekly task, for example.

Conclusions. We depict in FIG. 11 the distribution of similar-
ities for each pair of backlogs present in the dataset (231 pairs).
Using a Kolmogorov-Smirnov test to measure the differences
between these distributions, we identified that 97% of the triples
are statistically different according to our implementation of the
s measure (p-value < 0.05). This is frustrating but also rea-
sonable considering that the backlogs collected in the reference
dataset come from different origins and specify projects that are
coming from very different business domains.

However, two pairs of backlogs exhibit a significant similar-
ity. In FIG. 11, they are visible in the rug bar, where all the
distributions’ averages forms a continuum in the [0.75, 1.5] in-
terval, except these two backlogs that exhibit an average higher
than 1.5.

– (g17, g5): The two systems are related to scientific data
publication. Scientists can publish the dataset used to
support their experiments in an automated or manual way.

– (g23, g26): The two systems are related to archive man-
agement. Archivists can moderate digital collections of
artifacts to organize their archive and publish it digitally.

Interestingly, these two pairs are close to each other in terms
of rationale, i.e., publish a digital collection of “things”. It
is also interesting to notice that even if the four systems are
related to content management, the one involved in the first pair

Figure 11 Distribution of similarities for each pair of backlog
(231), the rug bars represent the average of each distribution

follows an approach where end-users publish data on their own,
manually or through an automated API, where the one involved
in the second pair relies on moderation processes. It means that
even if simple, the s function defined over the graph model is
precise enough to provide this kind of distinction.

To win some intuition about what is considered a good match,
here is the highest-scoring matching stories between (g17, g5):

– “As an API User, I want to have a flexible API using
HASC codes for countries, regions and cities, so that I can
visualize budget data on maps”

– “As an app developer, I want to share a dataset type across
multiple applications that include the dataset type’s code
in their artifacts”

Both stories have as entity Code. The persona in the first one
is API User and App Developer in the second. This high-
lights the NLP similarity metrics’ interest that matched similar
personas described with different vocabulary.

5. Threats To Validity

5.1. Threats to Validity
Our objective here is not to demonstrate that a given feedback
provider is better than another one or perform an empirical eval-
uation of the quality of the backlogs available in the reference
dataset. To perform such a task, access to the engineers who
worked on the different products would have been necessary
and access to a qualified version of the dataset (e.g., similarity
between stories, iterations planning). Considering that such ac-
cess does not exist, it is impossible to support such experiments.
Moreover, as the products in the dataset are anonymized, it is
impossible to reach the companies or open-source projects that
worked on them to perform such a qualification.

This is why the ground truths (e.g., the reference equivalence
clusters used to measure the story recommendation) were de-
fined by the authors. Unfortunately, this triggers an external

Modelling Agile Backlogs as Composable Artefacts 11

32

Scale as first-class citizen for operators
• Context: identifying similiarites inside agile product backlogs

• “As a <…>, I want to <…> so that <…>”

• Reference dataset (Dalpiano, 2018): 1,681 stories for 22 products

• Scale issues: combinatorial similarities (+ NLP analysis)

• 1,671 stories, 2,973 elements, 4M+ measurements

• Computation: 122 CPU hours, 40 CPUs

[JOT, 2022]

Need for an operator able to support that scale

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 33

Scaling Composition: Tech. Blinders

• Lots of reserarch is done in the “Java” ecosystem

• Needed technology outside of our comfort zone

• Neo4J did not scale, switch to Python / NetworkX

• NLP Dev. expertise is in Python

• Actually, legacy operators that scale are not written in Java (neither in Python)

• Have you tried reverse engineering C/C++ code? &

• The SE community is missing lots of opportunities here.

3DUW�RI�VSHHFK�WDJV

(Z H MHJ\S[` TLTILY 0 ^HU[[V HJJLZZ H JVSSLJ[PVU ^P[OPU [OL YLWVZP[VY` ZV [OH[0 JHU VI[HPU YLZLHYJO TH[LYPHSZ

<UP]LYZHS (+7 +,; 56<5 56<5 7965 =,9) 7(9; =,9) +,; 56<5 (+7 +,; 56<5 (+7 (+7 7965 =,9) =,9) 56<5 56<5

7LUU�;YLLIHUR 05 +; 55 55 797 =)7 ;6 =) +; 55 05 +; 55 05 05 797 4+ =) 55 55:

)RUPDW
9VSL�PUKPJH[VY
$V�D
4LHUZ�PUKPJH[VY
,�ZDQW�WR
,UKZ�PUKPJH[VY
6R�WKDW

6LPSOLðHG
9VSL
IDFXOW\�PHPEHU
4LHUZ
,�FDQ�DFFHVV�D�FROOHFWLRQ�ZLWKLQ�WKH�UHSRVLWRU\
,UKZ
,�FDQ�REWDLQ�UHVHDUFK�PDWHULDOV

5ROH
-\UJ[PVUHS�YVSL
IDFXOW\�PHPEHU ��JVTWV\UK�

0HDQV
4HPU�]LYI
DFFHVV
4HPU�VIQLJ[
FROOHFWLRQ �^P[O�WOYHZL� D�FROOHFWLRQ
-YLL�MVYT
FDQ�ZLWKLQ�WKH�UHSRVLWRU\
^P[O�UV\UZ� UHSRVLWRU\
VM�^OPJO�JVTWV\UKZ

(QGV
-YLL�MVYT
,�FDQ�REWDLQ�UHVHDUFK�PDWHULDOV
:\IQLJ[
-V\UK� , ��ZV�P[�^HZ�YLWSHJLK�^P[O�[OL�M\UJ[PVUHS�YVSL
=LYI
REWDLQ
6IQLJ[
UHVHDUFK�PDWHULDOV ��JVTWV\UK��^P[O�WOYHZL� UHVHDUFK�PDWHULDOV
5V\UZ
UHVHDUFK PDWHULDOV
VM�^OPJO�JVTWV\UKZ� UHVHDUFK�PDWHULDOV

Figure 6 Output of VisualNarrator for s1

obtained when processing s1. The NLP extraction identifies the
persona (faculty member), the action (access), and two entities
(collection and repository). Based on this extraction process, it
is possible to automatically instantiate stories according to the
approach described in the previous section.

Each NLP extraction tool will rely on its data format, as there
are no standards whatsoever in this field. Therefore, integrat-
ing a new extraction tool requires writing glue code that will
transform the tool’s output into stories that are modelled accord-
ing to our proposition. Nevertheless, from an abstract point of
view, we assume this technical challenge is being tackled by a
function named nlp-extract, taking as input a textual backlog
(e.g., a file) and providing as output stories (as instances of the
Story class). Then, building the product backlog means using
the increment operator on the empty backlog.

nlp-extract(file) = {s1, . . . , sn} 2 S
n

b = ∆ n

i=1

si 2 B

Summary. In this section, we demonstrated how the previ-
ously defined formal elements and operators could be combined
into a toolchain that interacts with a classical DevOps environ-
ment to create backlog models automatically.

4. Validation: Models as Feedback Providers
Researching user stories and backlogs becomes complicated
when reaching the validation stage. As stories capture the busi-
ness values, they are considered trade secrets by companies,
making the definition of case-study (qualitative) experiments
very difficult. Furthermore, as an immediate consequence, the
lack of available data prevents performing large-scale quantita-
tive analysis.

Instead, we consider here five validation scenarios identi-
fied while working closely with industrial partners during the
past five years. We denote scenarios as Si to avoid confu-
sion with stories (identified as si). We classified the feedback
one can compute over the graph according to three categories:
(i) Product analysis (S1, S2), (ii) Iteration planning (S3, S4),
and (iii) Portfolio management (S5). Our industrial partners
(IBM, Instant Systems) coined these scenarios as essential to
support their software development feedback loop in a DevOps

Obstacle (Sedano et al. 2019) Validation Scenario
O1: Preconceiving Problems S4, S5
O2: Preconceiving Solutions S3
O3: Pressure to Converge S1
O4: Ambiguity S4, S5
O5: Time Pressure S2, S3
O6: Blocking Access to Users N/A

Table 1 Linking Obstacles (Oi) and Scenarios (Si)

context. These scenarios cover five out of the six obstacles
(Oi) to product backlog management identified by Sedano et al.
in their reference study investigating product backlog manage-
ment (Sedano et al. 2019). We describe in TAB. 1 how the five
validation scenarios cover the obstacles. As our contribution
does not consider end-users as part of its scope, it is not possible
by design to cover the last obstacle identified.

Our objective in this section is to validate that the backlog
models defined in SEC. 3 can be used to answer value-added
questions from POs and developers. The point is not to pro-
pose a silver bullet solution, but instead to provide a tooled
model that can be customized to fit various scenarios. We ap-
plied these scenarios to the only publicly available dataset of
backlogs (Dalpiaz 2018). It is necessary to note that this refer-
ence dataset does not qualify the stories and only present them
grouped by product in a flat representation. Typically, there is
no information about the different iterations used to develop the
product, and there is no additional description of the artifacts
involved. In the remainder of this paper, we denote as gi a back-
log identified under this name in the reference dataset. After
being processed by the approach from Gilson et al (Gilson et al.
2020; Galster et al. 2019), it results in a set of 1, 671 stories.

Software Artefact. To support this validation section, we pro-
vide a companion software artifact, available as open-source
software on GitHub at the following address: https://github.com/
ace-design/backlog-modelling. The artifact is implemented in
PYTHON 3.9 and contains the metamodel implementation, the
initial validation dataset (Dalpiaz 2018), and the code of each
scenario described in this paper.

4.1. S1: Structural analysis (Product)
Context & Pain point. We consider here an agile team work-
ing on a specific product. The team is pressured to converge
(O3) and needs to prepare arguments to defend how its backlog
compares to the global portfolio in the company.

Scenario implementation. Leveraging the underlying graph
structure, it is possible to compute structural metrics (e.g., num-
ber of vertices, number of edges, average connectivity) on a
backlog to characterize it. Computing a footprint of a backlog
at a given point in time is implemented as the construction of
a vector containing structural dimensions of the graph (e.g.,
number of personas, number of actions)

Validation experiment. To validate this scenario, we designed
an experiment that analyses the 22 available backlogs accord-
ing to standard graph metrics. The point is to investigate the

Modelling Agile Backlogs as Composable Artefacts 7

Composition is an
application domain by itself

Intermediate
conclusions #3

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 35

4Conclusions
The real ones!

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 36

Thanks for your attention!
• Software Composition is everywhewre

• It solves “programming” scalability (divide & conquer)

• It requires expertise* to scale.

• What can we do as Soft. Eng. researchers?

• Reify composition operators when we encouter them

• (Stop putting half-baked and non reusable code on Github)

• Reify what “scale” means in different contexts.

*Maybe I should have sticked to snowboarding

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 37

This work is a team effort
Alexandra Lapointe
PhD, 01/2021-…

Sébastien Bonnieux
PhD (2020)

Günter Jungbluth
MSc (2018)

Alexandre Feugas
PhD (2014)

Corinne Pulgar
MASc, 09/2021-…

Sami Lazreg
PhD (2020)

Benjamin Benni
PhD (2019), MSc (2016)

Ivan Logre
PhD (2017), MSc (2013)

Cyril Cecchinel
PhD (2017), MSc (2014)

Eirik Brandtzæg
MSc (2011)

And all co-authors
& colleagues…

Jinx DumplingSelena

|29 May 2022| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 38

Blatant advertisement
• Research lab: McMaster Centre for Software Certification

• And more generally the Computing and Software (CAS) department

• Current openings: Faculty positions, PDF, PhD, MASc, Summer internships …

• Long-lasting tradition of industrial collaboration (e.g., Cubic, Stellantis, TELUS)

• Join us! For example: “Safety Over-the-Air software Updates”

• Topics: Change impact analysis, Safety insurance & tooling, automation, …

• Other opportunities: https://www.mcscert.ca/recruiting/

• Contact: Dr Vera Pantelic (pantelv@mcmaster.ca)

Dr. Sébastien Mosser
Associate Professor
mossers@mcmaster.ca
https://mosser.github.io

