
Sébastien Mosser
16/03/2021
SFWRENG 3S03 - McMaster University

crédits photos: Pixabay

Mutation Testing, Under the hood

Additional
Material

Code

Running example

Design models

2

Lecture organization: Walkthrough

3

Live demonstration Discussions

Previously on 3S03… Unit Testing

4
S suite : System → Report suite(S)

System
Under

Test Test Suite Report (e.g., %)

coverage

Previously on 3S03… Mutation Testing

5

…
mut1

mutn

σ(+ ↦ − , S)

σ(new T() ↦ null, S) ☠

"

✅

❌
survivor

dead

n

∑
i=1

suite(mut1)

suite(mutn)

64

1
23

Mutation testing IRL

Designing a mutation framework

Implementing the framework

Going further
6

Code Coverage

7

$ mvn org.jacoco:jacoco-maven-plugin:prepare-agent  
$ mvn package
$ mvn org.jacoco:jacoco-maven-plugin:report

PIT Mutation Testing

8$ mvn org.pitest:pitest-maven:mutationCoverage

Mutation Coverage complements Unit Test Coverage

9 104

1
23

Mutation testing IRL

Designing a mutation framework

Implementing the framework

Going further
10

Orchestrating the process

• Prepare the environment
• Clean temporary files, …

• Prepare mutants
• Inject the mutations

• Run test on mutants

• ,
• mvn clean test

• Extract results
• Aggregate surefire results

∀m ∈ {m1, …, mn}

11

#!/usr/bin/env bash

ORIGINAL=$1
HOW_MANY_MUTANTS=$2
HOW_MANY_MUTATIONS=$3

function main()
{
 prepare_environment
 prepare_mutants
 run_tests_on_mutants
 extract_results
}

File: prof-x.sh

Which abstractions do we need for mutations?

12

Which abstractions do we need for mutations?

• Find the spots where a mutation can be used

• Rewrite a given program at a given spot

• Trace the mutations

• Read the configuration (e.g., mutation level)

13

Which abstractions do we need?

14

mutations

finders

rewriters

Mutator
Element

mutate(p: Program, howMany: Int)
getFinder(): Finder<Element>
getRewriter(): Rewriter<Element>

Finder
Element

findCandidates(p: Program, howMany: Int): Element[*]

Rewriter
Element

rewrite(elements: Element[*]): Trace[*]
rewrite(element: Element): Trace

Trace

rewriterName: String
file: String
line: Int
column: Int

Main

main(args: String[*])

Runner

this(path: String, howMany: int, id: String)

run()
randomMutation(): Mutator

*

Configure

Find the spots

Rewrite

Trace

_: Main m: Mutator _: Finder _: Rewriter

main(args)

this(...) _: Runner

this(...) p: Program

run()

randomMutation(): m

mutate(p, howMany)

findCandidates(p, howMany)

query(...)

elements

elements

rewrite(elements)

loop [forall e in elements]
rewrite(e)

replace(...)

this(...) _: Trace

traces

traces

Collaboration

15

• Find the spots

• Rewrite

• Trace

• Configure
164

1
23

Mutation testing IRL

Designing a mutation framework

Implementing the framework

Going further
16

This is a walkthrough

17

mutations
finders rewriters

Mutator
Element

mutate(p: Program, howMany: Int)
getFinder(): Finder<Element>
getRewriter(): Rewriter<Element>

IntroduceNullPointer
Return

getFinder(): Finder<Element>
getRewriter(): Rewriter<Element>

Finder
Element

findCandidates(p: Program, howMany: Int): Element[*]

Rewriter
Element

rewrite(elements: Element[*]): Trace[*]
rewrite(element: Element): Trace

ObjectReturn
Return

findCandidates(...)

ReturnNull
Return

rewrite(element: Element): Trace

Runner

*

provided

focus

$ git checkout teaching

Locating nullable return instructions

18

public class ObjectReturn implements Finder<CtReturn<?>> {

 @Override
 public Set<CtReturn<?>> findCandidates(Launcher program, int howMany) {
 List<CtReturn<?>> queried =
 program.getModel().getRootPackage().filterChildren(
 (CtReturn<?> r) -> !r.getReturnedExpression().getType().isPrimitive()
).list();
 Collections.shuffle(queried);
 return queried.stream().limit(howMany).collect(Collectors.toSet());
 }
}

Inside program, locate return instructions that are nullable

Return null instead of an object

19

public class ReturnNull extends Rewriter<CtReturn<?>> {
 @Override
 protected void rewrite(CtReturn<?> e, Factory factory) {
 CtCodeSnippetStatement snippet = factory.Core().createCodeSnippetStatement();
 snippet.setValue("return null");
 e.replace(snippet);
 }
}

Substitute a given return instruction by a “return null” snippet

Create a Mutator to introduce null pointers

20

public class IntroduceNullPointer extends Mutator<CtReturn<?>> {
 @Override
 protected Finder<CtReturn<?>> getFinder() {
 return new ObjectReturn();
 }

 @Override
 protected Rewriter<CtReturn<?>> getRewriter() {
 return new ReturnNull();
 }
}

private Mutator<?> randomMutator() {
 List<Mutator<?>> available = new ArrayList<>();
 // Add available mutators here
 available.add(new IntroduceNullPointer());
 Collections.shuffle(available);
 return available.get(0);
}

Strategy pattern (GoF)

Register the mutator

Mutating the code!

21

package com.kata.poker;
public class ThreeOfKindRule implements com.kata.poker.Rule {
 // ...
 @java.lang.Override
 public com.kata.poker.Rank apply(com.kata.poker.Hand hand) {
 com.kata.poker.ThreeCards threeCards =  
 hand.selectThreeCardsWithTheSameValue().get();
 return null;
 }
}

package com.kata.poker;
public class ThreeOfKindRule implements Rule {
 // ...
 @Override
 public Rank apply(Hand hand) {
 ThreeCards threeCards = hand.selectThreeCardsWithTheSameValue().get();
 return Rank.threeOfKind(takeOneOf(threeCards).value);
 }
}

Running the framework

22

mosser@loki mutation-demo % ./prof-x.sh poker-hands-kata 4 1
Preparing Mutants

ID, Mutation, File, Line, Column
mutants/mutant_1,ReturnNull,Rank.java,234,13
mutants/mutant_2,ReturnNull,Rank.java,189,13
mutants/mutant_3,ReturnNull,TwoCards.java,19,9
mutants/mutant_4,ReturnNull,Rank.java,230,13

Testing Mutants
Processing mutants/mutant_1
Processing mutants/mutant_2
Processing mutants/mutant_3
Processing mutants/mutant_4

Extracting results

ID, Tests, Failures, Errors
mutants/mutant_1,70,0,1
mutants/mutant_2,70,0,0
mutants/mutant_3,70,6,1
mutants/mutant_4,70,0,0

☠"☠"}

@Override
public String toString() {
 return format("Straight{highestCard=%s}",
 highestCard);
}

@Override
public String toString() {
 return String.format("TwoPair{first=%s, second=%s}",
 firstPairValue, secondPairValue);
}

We should be more
picky while selecting!

234

1
23

Mutation testing IRL

Designing a mutation framework

Implementing the framework

Going further
23

Introducing new Mutators?

• Flip conditions
• Substitute && by ||, or < by ≥, …

• Make conditionals constants

• if(x > 0 || y < 17 && a veryComplexTest()) { … } if (true) { … }
• Flip conditionals

• Negate the condition, or switch the branches
• “All objects are created equals”

• Make the equals function always return true
• …

↦

24Rewriting the program is not the difficult part!

Perspectives: Software Engineering Challenges!

• Research:
• Mutant selection
• Mutant equivalence
• Traceability

• Engineering
• Reporting
• Performances

25

An Analysis and Survey of the Development
of Mutation Testing

Yue Jia, Student Member, IEEE, and Mark Harman, Member, IEEE

Abstract—Mutation Testing is a fault-based software testing technique that has been widely studied for over three decades. The

literature on Mutation Testing has contributed a set of approaches, tools, developments, and empirical results. This paper provides a

comprehensive analysis and survey of Mutation Testing. The paper also presents the results of several development trend analyses.
These analyses provide evidence that Mutation Testing techniques and tools are reaching a state of maturity and applicability, while

the topic of Mutation Testing itself is the subject of increasing interest.

Index Terms—Mutation testing, survey.

Ç

1 INTRODUCTION

MUTATION Testing is a fault-based testing technique
which provides a testing criterion called the “muta-

tion adequacy score.” The mutation adequacy score can be
used to measure the effectiveness of a test set in terms of its
ability to detect faults.

The general principle underlying Mutation Testing work
is that the faults used by Mutation Testing represent the
mistakes that programmers often make. By carefully
choosing the location and type of mutant, we can also
simulate any test adequacy criteria. Such faults are
deliberately seeded into the original program by simple
syntactic changes to create a set of faulty programs called
mutants, each containing a different syntactic change. To
assess the quality of a given test set, these mutants are
executed against the input test set. If the result of running a
mutant is different from the result of running the original
program for any test cases in the input test set, the seeded
fault denoted by the mutant is detected. One outcome of the
Mutation Testing process is the mutation score, which
indicates the quality of the input test set. The mutation score
is the ratio of the number of detected faults over the total
number of the seeded faults.

The history of Mutation Testing can be traced back to
1971 in a student paper by Lipton [144]. The birth of the
field can also be identified in papers published in the late
1970s by DeMillo et al. [66] and Hamlet [107].

Mutation Testing can be used for testing software at the
unit level, the integration level, and the specification level. It
has been applied to many programming languages as a
white box unit test technique, for example, Fortran programs
[3], [36], [40], [131], [145], [181], Ada programs [29], [192],
C programs [6], [56], [97], [213], [214], [237], [239], Java

programs [44], [45], [127], [128], [129], [130], [150], [151],
C# programs [69], [70], [71], [72], [73], SQL code [43], [212],
[233], [234], and AspectJ programs [12], [13], [17], [90].
Mutation Testing has also been used for integration testing
[54], [55], [56], [58]. Besides using Mutation Testing at the
software implementation level, it has also been applied at the
design level to test the specifications or models of a program.
For example, at the design level, Mutation Testing has been
applied to Finite State Machines [20], [28], [88], [111],
Statecharts [95], [231], [260], Estelle Specifications [222],
[223], Petri Nets [86], Network protocols [124], [202], [216],
[238], Security Policies [139], [154], [165], [166], [201], and
Web Services [140], [142], [143], [193], [245], [259].

Mutation Testing has been increasingly and widely
studied since it was first proposed in the 1970s. There has
been much research work on the various kinds of techniques
seeking to turn Mutation Testing into a practical testing
approach. However, there is little survey work in the
literature on Mutation Testing. The first survey work was
conducted by DeMillo [62] in 1989. This work summarized
the background and research achievements of Mutation
Testing at this early stage of development of the field. A
survey review of the (very specific) subarea of Strong, Weak,
and Firm mutation techniques was presented by Woodward
[253], [256]. An introductory chapter on Mutation Testing
can be found in the book by Mathur [155] and also in the
book by Ammann and Offutt [11]. The most recent survey
work was conducted by Offutt and Untch [191] in 2000. They
summarized the history of Mutation Testing and provide an
overview of the existing optimization techniques for Muta-
tion Testing. However, since then, there have been more
than 230 new publications on Mutation Testing.

In order to provide a complete survey covering all the
publications related to Mutation Testing since the 1970s, we
constructed a Mutation Testing publication repository,
which includes more than 390 papers from 1977 to 2009
[121]. We also searched for master’s and PhD theses that
have made a significant contribution to the development of
Mutation Testing. These are listed in Table 1. We took four
steps to build this repository. First, we searched the online
repositories of the main technical publishers, including

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 5, SEPTEMBER/OCTOBER 2011 649

. The authors are with the Department of Computer Science, University
College London, Malet Place, London WC1E 6BT, UK.
E-mail: {yue.jia, mark.harman}@cs.ucl.ac.uk.

Manuscript received 21 Sept. 2009; revised 15 Feb. 2010; accepted 1 Apr.
2010; published online 10 June 2010.
Recommended for acceptance by P. Frankl.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-09-0232.
Digital Object Identifier no. 10.1109/TSE.2010.62.

0098-5589/11/$26.00 ! 2011 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Universite du Quebec a Montreal . Downloaded on March 16,2021 at 00:04:32 UTC from IEEE Xplore. Restrictions apply.

Thanks for your attention!

26

https://mosser.github.io/

https://ace-design.github.io/

