
Sébastien Mosser
Research seminar, McMaster University
15/03/2021

crédits photos: Pixabay

Towards Scalable Software Composition

Sébastien Mosser

• 19-…: Associate Professor, UQAM

• 12-18: “Maître de Conférences”, Univ. Côte d’Azur

• 11-12: Research Scientist, SINTEF

• 10-11: Postdoc, Inria Lille Nord-Europe

• 07-10: PhD student, Université de Nice

Snowboarding since 1995. Composing things since 2007.

Example of Industrial Collaboration: MERMAID

3

• Project started in 2002 by Guust Nolet
• Acoustic passive monitoring of oceans
• Now 3rd generation buoys deployed

Pictures by OSEAN & Geoazur

Projet MERMAID (ERC Advanced Guust Nolet)

Running Software, 20,000 leagues under the seas

4Ok, but where is the composition?
Pictures by Geoazur

• MERMAIDs are expensive, and often idle
• Oceans are full of challenges (80% unexplored)

• Monitoring whales, plastic pollution, salinity, …

• Compose “data collection campaigns”
• A MERMAID is not a smartphone

• Legacy ad hoc code (no operating system)

• Hostile environment (salt, pressure), energy, …

Running Software, 20,000 leagues under the seas

5

“Can you build an AppStore for our MERMAIDs?”
- G. Nolet, 2016

• So “composition” is all about hacking a buoy?

• Scientific challenges:
• Conflict detection among requirements expressed by scientists

• Static analysis of the applications (what-if scenarios)
• Modelling constraints related to the “hostile” environment

• Empirical benchmark and simulation for energy consumption

6

Running Software, 20,000 leagues under the seas

Composing

All these research challenges are related to composition!

Software Composition by example

7

Merge Project

TABLE III
MELA CODE COMPARED TO GENERATED CODE.

MeLa code C

1 ContinuousAcqMode Simple :
2

3 Input :
4 s e ns or : Hydrophone ;
5 data : x [1 0] ;
6

7 V a r i a b l e s :
8 i n t y ;
9

10 RealTimeSequence :
11 y = mean (x , 1 0) ;
12 endseq ;
13

14 endmode ;

1 / / S e ns or t a s k � hydrophone . c
2 void h y d r o p h o n e t a s k (void * p a r a m e t e r s){
3 w a i t E x t I n t (a d c o n v e r t e r . d r d y e i n t i d) ;
4 x s i m p l e f i l l�>d a t a [x s i m p l e f i l l�>i] = r e a d s a m p l e () ;
5 x s i m p l e f i l l�>i += 1 ;
6 i f (x s i m p l e f i l l�>i s F u l l) {
7 i f (x s i m p l e f i l l == &x s i m p l e b u f f 1) {
8 x s i m p l e p r o c e s s = &x s i m p l e b u f f 1 ;
9 x s i m p l e f i l l = &x s i m p l e b u f f 2 ;

10 } e l s e {
11 x s i m p l e p r o c e s s = &x s i m p l e b u f f 2 ;
12 x s i m p l e f i l l = &x s i m p l e b u f f 1 ;
13 }
14 s e m a p h o r e S i g n a l (s imple Semaphore) ;
15 }
16 }
17

18 / / G loba l v a r i a b l e s � g l o b a l . c
19 i n t 3 2 a r r a y t * x s i m p l e f i l l ;
20 i n t 3 2 a r r a y t * x s i m p l e p r o c e s s ;
21 i n t 3 2 t x s imple 1 [1 0] ;
22 i n t 3 2 a r r a y t x s i m p l e b u f f 1 = {x s imple 1 , 0 , 10 , f a l s e } ;
23 i n t 3 2 t x s imple 2 [1 0] ;
24 i n t 3 2 a r r a y t s i m p l e x b u f f 2 = {x s imple 2 , 0 , 10 , f a l s e } ;
25

26 / / P r o c e s s i n g t a s k � s i m p l e t a s k . c
27 s t a t i c i n t 3 2 t y ;
28 void s i m p l e t a s k (void * p a r a m e t e r s){
29 whi le (1) {
30 semaphoreWai t (s imple Semaphore) ;
31 y = mean (x s i m p l e p r o c e s s , 1 0) ;
32 }
33 }

and that several applications can be deployed on the same float
and share its functionalities (C3).

D. Reduction of expertise
When an application is written in MeLa, the developer does

not have to consider the control board and the acquisition
board. The development of acquisition modes does not require
to think about embedded software concerns, for example
defining tasks, their initialization, their execution priority,
the way they are started and stopped or the synchronization
between tasks receiving data from sensors and tasks processing
the data. Thus, the MeLa language hides several embedded
software concerns.

Table III illustrates the reduction of expertise given by the
MeLa language compared to the generated code. This table
presents the generation of an acquisition mode into a sensor
task and a processing task, as shown in figure 2. For that
purpose, we use a simple application that reads data from the
hydrophone and computes an average. The Input part of the
MeLa code generates the sensor task. This task waits for data
from the hydrophone. When the hydrophone is ready to send
data, it sends a signal to the processor (a hardware interrupt)
that triggers the execution of the sensor task (line c3)3.

The input variable (line m5) is generated as two array
of data (lines c19-c24). One is filled by the sensor task
(line c4), while the other one is processed by the processing

3Reference to line numbers are given with an m for the MeLa code and a
c for the C code (e.g., m1, c1).

task (line c31). When the x_simple_fill array is full
(line c6), the array is switched with x_simple_process
(lines c7-c13) and the execution of the processing task is
triggered with a signal (line c14). The RealTimeSequence
part of the acquisition mode is converted in a processing task
(lines c28-c33), that is waiting for the sensor task (line 30).
The Variables part is converted to local variables contained
in the task (line 27). In the application written in MeLa, the
developer only defines the input sensor, the input variable,
and the algorithm to use. She can focus on the behavior of
applications rather than on embedded software concerns.

Another way to estimate the reduction expertise is to
compare the amount of code to write in MeLa, with the amount
of generated code, that would be written manually. Looking
at the total number of lines of the composed application, one
has to write 90 lines of code in MeLa, while 600 lines must
be written to develop the application with the C language.

By hiding embedded software concerns and reducing the
amount of code to write, the MeLa language allows oceanogra-
phers to develop applications for the float by themselves (C1).
Moreover, generating a code tailored for the MeLa applications
helps to produce efficient and reliable applications (C2). For
example, in MeLa the sensors are automatically shut down
when they are not used. In C, this behavior must be written
by the developer.

Marine
biologist

Geoscientist Hardware engineers

1. Model the MERMAID lifecycle & campaigns

• Compose multiple campaigns together (merge,)
• Compose campaigns with the lifecycle (project)
• Open-source domain-specific language for geoscientists (MeLa)

2. Simulate applications to validate the composition
• Benchmark energy consumption
• Trade-off analysis: Whales, Earthquakes, both?

≡

8

S. Bonnieux’s PhD
2017-2020

[Oceans 2019]
[Sensors 2020]

Funding: OSEAN-PACA + CNRS, ~140K$

Software Composition in the context of MERMAIDs

Lessons learned: Software Composition matters! (2010-…)

• Divide to conquer, but compose to vanquish.

• Like Mr Jourdain, you’re composing without knowing it:
• Modularizing code (e.g., packages, functions)

• Configuring the Linux kernel

• Weaving persistance into a Spring application

• Pulling code from a Git repository

• Deploying & invoking micro-services

• …

9

Research challenge: Theoretical foundations + Trade-offs
10

Can we make

Software Composition Scalable?

(unsolved)
Research Challenge

411

1
23

Diving into
Software Composition

Composing Rewriting Rules
(2018-2020)

Modelling & Scaling Composition
(2020-…)

Conclusions & Take-aways

Code rewriting at large-scale

• Code rewriting in a nutshell:

•

• With a rule and a program, the rewritten one
• Code rewriting from the trenches:

• Image layering for containers (Docker)

• Code quality in the Linux Kernel (Coccinelle)

• Automated bug fix in Android (Spoon)

• Rules are composable by definition:

•

Rule : Program → Program
ρ P P′ = ρ(P)

ρ12(P) = (ρ1 ∙ ρ2)(P) = ρ1(ρ2(P))
12

…
x = kzalloc(sizeof(*a), 0);
…

Rewriting the Linux Kernel

• 20 millions of LoCs (03/2021)
• Average of 7,000 commits/month

• Coccinelle to enforce good practices
• 59 patches to “fix” committed code
• Research challenge: Overlapping rules

13

…
x = kmalloc(sizeof(*a), 0);
memset(a, 0, sizeof(*a))
…

Ri

P

P′

Ri(P)

Example of rule composition conflict

14

BENNI ET AL. 3 of 18

(A)

(C)

(D)

(B)

FIGURE 1 Coccinelle: Using semantic patches to rewrite C code

to use a new function available in the kernel library instead of the previous API. It describes a semantic patch removing any call to the kernel

memory-allocation function (kmalloc, line 5) that is initialized with 0 values (memset, line 8) and replacing it by an atomic call to kzalloc (line

6), doing allocation and initialization at the same time. Wildcard patterns can define guards, for example, here the patch cannot be applied if

the allocated memory was changed in between (using the when keyword, line7). Figure 1B describes another semantic patch used to fix a very

common bug, where the memory initialization is not done properly when using pointers (line 8). These two examples are excerpts of the examples

available on the tool webpage.*

Considering these two semantic patches, the intention of applying the first one (Rk) is to use a call to kzalloc whenever possible in the source

code, and the intention associated to the second one (Rm) is to fix a bad memory allocation. In the state of practice, applying the two patches, in

any order, does not yield any error. However, the application order matters. For example, when applied to the sample program pc described in

Figure 1C:

• pkm = Rk(Rm(pc)): The erroneous memset is fixed (Figure 1C, line 13), and as a consequence, the kzalloc optimization is also applied to the

fixed memset, merging line 11 and line 13 into a single memory allocation call. In this order, the two initial intentions are respected in pkm:

All the erroneous memory allocations are fixed, and the atomic function kzalloc is called whenever possible. This is the expected result

depicted in the upper part of Figure 1D.

• pmk = Rm(Rk(pc)): In this order, the erroneous memory allocations are fixed after the kzalloc merge. As a consequence, it is possible to miss

some of these kzalloc calls when it implies badly defined memset. Considering pc, line 11 and line 13 are not mergeable until line 11 pointer

is fixed, leading to a program pmk where the intention of Rk is not respected: The kzalloc method is not called whenever it is possible in the

final program (lower part of Figure 1D).

2.2 Using spoon to fix antipatterns in android applications

Spoon is a tool defined on top of the Java language, which works at the AST level. It provides the AST of a Java source code and lets the

developer define her transformations. A Spoon rewriter is modeled as a Processor, which implements an AST to AST transformation. It is a

Java class that analyzes an AST by filtering portions of it (identified by a method named isToBeProcessed) and applies a process method to

* http://coccinelle.lip6.fr/impact_linux.php. The ‘‘kzalloc treewide’’ semantic patch implements Rk and the ‘‘fix size given to memset’’ one implements Rm .

∅

R1

R2

R1(R2(P)) = P’’

R2(R1(P)) = P’
P’ ≢ P’’

✅

Scalability: Composing 59 rules!

• How to identify conflicting rules?
• Ordering challenge

• 59! () combinations to handle

• Performance challenge
• Patches are time consuming (~190 minutes)

• Maintenance/safety challenge
• How to reduce the search space?

• Engineering challenge
• Linux and Coccinelle are non-negotiable

1080

15https://github.com/torvalds/linux/tree/master/scripts/coccinelle

Abstracting rules composition

• Looking for fixed points at this scale is “out of the question”

• Trade-off: , where

• is an idempotent rewriting function

• is a postcondition checker (✅)

• Assumption: we can manipulate programs

• (e.g., the diff command)

• (e.g., the patch command)

• (e.g., a patch concatenation algorithm)

Let ρ = (φ, χ) ∈ (Φ × X) = P
φ : Program → Program
χ : Program × Program → (

⊖ : Program × Program → Δ
⊕ : Program × Δ → Program
⊙ : Δ × Δ → Δ

16

Modelling rules composition operators

• Extending the state-of-practice with isolated composition

• Let a program, two rewriting functions

• , and

•
• Generalizing & Including postconditions verification

• Providing guarantees: Conflict detection

p (φ1, φ2) ∈ Φ2

p1 = φ1(p), Δ1 = p1 ⊖ p p2 = φ2(p), Δ2 = p2 ⊖ p
p′ = p ⊕ (Δ1 ⊙ Δ2)

17

B. Benni’s PhD
2016-2019

[JSEP 2019]

iso : Program × Pn → Program
p, {ρ1, …, ρn} ↦ piso = p ⊕ (⊙n

i=1 (φi(p) ⊖ p)), ∧n
i=1 χi(p, piso)

Empirical validation

• Dataset considered for evaluation:
• Linux: Randomly sampled 19 versions (1/month)
• Coccinelle: rules triggered when running “make coccicheck” (35)

• Results:
• Ordering: Discovered 2 conflicting rules
• Performance: Quicker than sequential
• Maintenance: 2! instead of 35! () to check
• Engineering: iso-functional tooling

1040

18

12 of 18 BENNI ET AL.

TABLE 3 Table of interactions between
pairs of semantic patches, on a given line of
a specific code file

Commit.id Rewriter #1 Rewriter #2 File that Contains Conflict Line of Conflict

38651683aa98 alloc_cast memdup .../sh_css_firmware.c 146

4efe37f4c4ef alloc_cast memdup .../sh_css_firmware.c 146

b134bd90286d alloc_cast memdup .../vega12_processpptables.ca 292

25a3ba610609 alloc_cast memdup .../sh_css_firmware.cb 133

bce1a65172d1 alloc_cast memdup .../vega12_processpptables.c 285

2551a53053de alloc_cast memdup .../vega12_processpptables.c 285

bfd40eaff5ab alloc_cast memdup .../vega12_processpptables.c 292

aDrivers/gpu/drm/amd/powerplay/hwmgr/vega12_processpptables.c.
bDrivers/staging/media/atomisp/pci/atomisp2/css2400/sh_css_firmware.c.

We also took 19 rules that detect and correct when possible energy-related antipatterns in Android apps.18 The experiments were run on a

mid-2015 MacBook Pro computer, with a 2,5 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 of RAM.

Our goal in this section is not to quantitavely validate each rewriting rule, but to show that issues described in the motivation section of this

paper (eg, overlapping rules) happen in real-life Android applications, on a set of apps that we do not manage. Quantifying how often the rules

conflict, on which context and why, is a another contribution, thus out-of-scope of this paper. We selected 22 public Android applications that

matched our technical requirements (eg, Android version compatible with both Paprika, SPOON, and Fenrir tools), thus reducing the number of

Android applications analyzed.

We will first focus on the characterization of the overlap that exists among these rules, before diving into a concrete example to see in practice

how our contribution properly supports software developers.

5.2.1 Overlapping antipatterns detection

Anti-patterns are bad practices in the software design or implementation that can affect quality metrics such as performance, memory, or energy

consumption. Mobile applications are by nature critical regarding their energy consumption. Paprika is a tool that allows one to analyze an

Android application and detect antipatterns, including the energy-related ones. Along with these antipatterns, their respective corrections are

developed. According to the tool chain used at the implementation level, the ‘‘correction’’ function is here a function that rewrites the AST of

an Android application14 using Spoon. Thus, fixing multiple antipatterns at the same time can lead to postcondition violations, especially if they

happen at the very same location. We consider here the 22 energy antipatterns available for detection in the Paprika toolsuite.** We use the

visualization tool associated to Paprika logs to identify pairs of colocated antipatterns. This situation can happen at three different levels: (a) the

class level, (b) the method level, and (c) the instruction level. When several antipatterns are colocated within the same scope, there is a high

probability that repairing the overlapping patterns will interact.

First, to identify the order of magnitude of such interactions, we only consider overlapping pairs. We depict in Figure 8 the result of analyzing

the 22 antipattern detection rules to the 19 apps of our dataset. At the class level, we detected up to 2130 cooccurences of the Leak Inner

Class (LIC ††) and the Long Method (LM ‡‡) anti-patterns (Figure 8B). We detected 87 pairs of overlapping antipatterns at the class level, among

the
(

22
2

)
= 231 pairs, meaning that almost 40% of the rules overlapped at this level in our dataset. At the method level (Figure 8B), 18

rules are overlapping, representing 8% of the possible conflicts. At the instruction level, only three antipatterns interact together. These results

strengthen the need to automate the detection of rule interaction issues on concrete examples, as it is not useful to analyze the 231 possible rule

combinations but only a small subset of such set.

The previous analysis only considered pairs of antipatterns. We used the Fenrir tool§§ to visualize at a coarse-grained level the relationship

existing among multiple antipatterns. We represent in Figure 9 the relationship that exists among antipatterns. Each node of the graph is an

antipattern, and the existence of an edge between two nodes means that these two antipatterns were detected at the very same place in the

dataset.

5.2.2 Concrete example

In the previous paragraphs, we validated the existence of overlaps between antipatterns in existing applications, emphasizing the need for

interaction detection mechanisms as the one described in this paper. Unfortunately, it is very difficult to reproduce the build chain associated to

these applications (even when the apps rely on tools such as Maven or Gradle), limitating the possibility to fix and rebuild all these apps in an

automated way. To tame this challenge and validate the safe reuse of code rewriters in the Android context, we made the choice to perform an

in-depth analysis of a single application.

In the Java ecosystem, each rewriting rule is defined as a Spoon Processor working at the AST level, and we also used the same mechanism

to implement the associated postcondition, as another Processor that identifies violations when relevant. To exemplify our contribution on a

** https://github.com/GeoffreyHecht/paprika
††Usage of a nonstatic, anonymous, inner class, leading to memory leak.
‡‡Method that has significantly more lines than the other, and can be splitted into smaller ones.
§§https://github.com/FlorianBourniquel/Fenrir

https://github.com/torvalds/linux/blob/master/Documentation/dev-tools/coccinelle.rst

2 conflicts, 36% cases

• Challenge the abstraction to other application domains
• Energy-efficiency for smartphone applications
• Container-based deployment of service architectures

• Scalability dimensions: Reuse & Ensure
• Empirical validation (22 android app, 11k images)
• Android: identify overlapping fixes
• Docker: detect faulty containers (ignored elsewhere)

19

Can we leverage this composition model ? (Horizontal scalability)

[JSEP 2019] [ICSR 2018] [Amadeus Industrial GlobalTech Keynote 2018]

Lessons learned: Scalability matters (2018-2020)

• Software engineering is all about trade-offs
• From optimal to usable (but trade-offs ≠ hacking/mundane)

• Scalability as an afterthought is a mistake

• Research on composition models:
• Need to address scalability issues, at ≠ dimensions

• e.g., performance, maintenance, quality assurance, and reusability

• Will make the paradigm usable at large-scale
• Requires theoretical foundations & engineering skill

20

[JOT 2020]
[JSEP 2019]
[ICSR 2018]
[SAC 2018]

Invited lecturer
ENS Lyon

(2018, 2019)

Funding: NSERC Discovery (145k$), CNRS (~20k$), UCA (~150k$)

421

1
23

Diving into
Software Composition

Composing Rewriting Rules
(2018-2020)

Modelling & Scaling Composition
(2020-…)

Conclusions & Take-aways

Polytech Nice School of Engineering

SMARTCAMPUS
SMARTCAMPUS.GITHUB. IO

Familiarize students to scalability

challenges with a local IoT platform

[UMC 14, Models EduSymp 18]

Funding: ~50k$

Scalability: Formal properties do matter!

• Challenge: focus on usage by developers
• How to develop operators faster and safer?
• How to improve support for operator’s users?

• Modelling properties associated to operators
• Equivalent elements: idempotency

• Operator folding: associativity

• Avoid useless calls: regularity, identity and absorption

• Order independence: commutativity

• Composing composition operators: distributivity

23

No silver-bullet!
Funding: NSERC Discovery (145k$), 2020-2025

Application domain: Source code management

• Team effort to bind together Compilers & Software Engineering
• “Équipe associée” (start: 50k$) with ENS Lyon & Inria

• Explore two dimensions of composition:
• Charting a large-scale compiler infrastructure (LLVM, ~10MLoC, Clang)
• Improving source code merging at the abstract level (56M+ GitHub users)

• Skills: graph theory (Reinharz), compilers (Gonnord, Privat), and soft. eng. (Mosser)

24
Ambition: Make git-merge & LLVM great again!

Application domain: Micro-services architectures

• Micro-services are a de facto architectural style in 2021
• Starting a show on Netflix composes up to 700 services

• Composition-related challenges: No silver-bullet, no afterthoughts
• Agile requirements composition for traceability

• Natural Language Processing (Meurs), Certification (Polacsek, Blay)

• Large-scale deployment & configuration variability
• Polyglot development & Software product lines (Klewerton, Kruger)

25
Ambition: Composition in heterogenous systems of systems!

[ICSOC, SPLC2020]

⏯

426

1
23

Diving into
Software Composition

Composing Rewriting Rules
(2018-2020)

Modelling & Scaling Composition
(2020-…)

Conclusions & Take-aways

Software Composition is everywhere!

• Research driven by industrial & practical collaborations
• Geosciences (OSEAN-PACA+CNRS, ~140k$)
• Embedded pipelines (Visteon, ~115k$)
• Cyber-physical systems (Datathings technological transfer, ~225k$)
• Software deployment (UCA, ~150k$) & visualization (UNS, ~150k$)

• Research challenges (2020-…)
• Scalable composition models are hard to elaborate
• Formal properties impact software developers daily life

27

Fundamentals of Composition Scalability

• Stop reinventing a squared wheel!

• Abstract the composition expertise
• Formal definition & tooling

• Conflicts & Interactions handling

• Verification & proofs

• …

• Customize for each domain

28

Interactions

Logical

Verification
Scheduling

Execution

Formal model

Traceability

Benchmark

Abstract

Composition

Engine

Time to consider (scalable) composition as a first class citizen

• Technological transfer
• Visteon: Pipeline composition [ICSE 2019, SAC* 2018]
• DataThing: time series composition () [FGS 2019, SAC 2018]
• PulseTotem✝: Spin-off startup company [SEAA 2014]

• Open-source software
• Incremental exploration of software [SPLC 2020, ICSOC 2020]
• Abstract Composition Engine [JOT 2020]
• SmartCampus reference architecture [UMC 2014]

× 20

Recent composition results (2014-2020)

29https://ace-design.github.io/

Joining McMaster’s Department of Computing and Software

• Faculty of Engineering
• Strong industrial ecosystem, multidisciplinary collaborations
• Renowned CS and SE programs

• Departmental expertise
• Digital & Smart Systems research cluster
• Software Quality (& theory of computation) areas of specialization

• E.g., “safety” of composed systems (emergent behaviours)

• Teaching: Software engineering
• Hamilton, Ontario

• Campus! Waterfalls! Great Lakes! Biking! Hiking! Canoeing!
30

This work is a team e!ort

31

Serge Dogny
PhD, 09/2021-…

Alexandra Lapointe
PhD, 01/2021-…

Sébastien Bonnieux
PhD (2020)

Günter Jungbluth
MSc (2018)

Alexandre Feugas
PhD (2014)

Corinne Pulgar
MSc, 09/2021-…

J.-P. Caissy
MSc, 01/2020-…

Sami Lazreg
PhD (2020)

Benjamin Benni
PhD (2019), MSc (2016)

Ivan Logre
PhD (2017), MSc (2013)

Cyril Cecchinel
PhD (2017), MSc (2014)

Eirik Brandtzæg
MSc (2011)

And all co-authors
& colleagues…

Jinx Dumpling

