Sébastien Mosser
Research seminar, McMaster University C; ace

15/03/2021
o)

Towards Scalable Software Composition

« 19-.... Associate Professor, UQAM

- 12-18: “Maitre de Conférences”, Univ. Cote d'Azur |
» 11-12: Research Scientist, SINTEF -+
« 10-11: Postdoc, Inria Lille Nord-Europe

i

« 07-10: PhD student, Université de Nice

Example of Industrial Collaboration: MERMAID @

+ Project started in 2002 by Guust Nolet
- Acoustic passive monitoring of oceans
- Now 3rd generation buoys deployed

Runni ng Softwa ['@, 20,000 leagues under the seas

GPS fix and Iridium

data transmission @
: - VLS

Ed

Descent
10 hours

Park
7days / 2000m

Ok, but where is the composition?

Runni ng Softwa ['@, 20,000 leagues under the seas

“Can you build an AppStore for our MERMAIDs?"
- G. Nolet, 2016
- MERMAIDs are expensive, and often idle
+ Oceans are full of challenges
+ Monitoring whales, plastic pollution, salinity,
+ Compose ‘data collection campaigns”

- AMERMAID is not a smartphone

+ Legacy ad hoc code (no operating system)

- Hostile environment (salt, pressure), energy,

Composing
Busainig Software, 20,000 leagues under the seas

- So “composition” is all about hacking a buoy?

- Scientific challenges:
- Conflict detection among requirements expressed by scientists
- Static analysis of the applications (what-if scenarios)
- Modelling constraints related to the "hostile” environment

- Empirical benchmark and simulation for energy consumption

All these research challenges are related to composition!

Software Composition by example Software Composition in the context of MERMAIDS

1. Model the MERMAID lifecycle & campaigns

oo
- Compose multiple campaigns together (merge, =)
L - Compose campaigns with the lifecycle (project)
Maril (, o . . _—
b,ﬂg; el : - Open-source domain-specific language for geoscientists (MeLa)
® ™ / ® ™ / 2. Simulate applications to validate the composition

3 - Benchmark energy consumption S. Bonnieuxs PhD
o0 ® 0 2017-2020
‘ - Trade-off analysis: Whales, Earthquakes, both?
. . . [Sensors 2020]
Geoscientist Hardware engineers [Oceans 2019]

7 s

Lessons leamed: Software Composition matters! (2010-..) i)

- Divide to conquer, but COMOSeE to vanquish.

Research Challenge

- Like Mr Jourdain, you're composing without knowing it:

+ Modularizing code (e.g.. packages, functions)

- Configuring the Linux kernel
- Weaving persistance into a Spring application

+ Pulling code from a Git repository

Can we make
Software Composition Scalable?

o 10

- Deploying & invoking micro-services

Research challenge: Theoretical foundations + Trade-offs

Code rewriting at large-scale

- Code rewriting in a nutshell: “
Composing Rewriting Rules - Rule : Program — Program android
(2018-2020) - With p arule and P a program, P’ = p(P) the rewritten one

Code rewriting from the trenches: ‘*
. . agn - Image layering for containers (Docker)
MOdeI‘lIng & Scallng ComPOSItlon . Codge qu:Lity \i the Linux Kernel (Coccinelle) doc er

(2020-..) - Automated bug fix in Android (Spoon)

- Rules are composable by definition:

= P1aP) = (py 2 p)(P) = pi(py(P))

Conclusions & Take-aways B

Rewriting the Linux Kernel

20 millions of LoCs (03/2021)
Average of 7,000 commits/month
Coccinelle to enforce good practices

59 patches to “fix" committed code

1 00

2type T;

1 expression x,
s 00

7= x = kmalloc(E1l,E2);

E, E1,E2;

7 hen I= \(

7 Y F
~ - memset((T) x, 0, E1);

P

x = kmalloc (sizeof (*a), 0);
memset (a, 0, sizeof (*a))

Example of rule composition conflict

100
2type T; Rl

1 expression x, E, E1,E2;
s 00

int main ()

Point *a;
V2
— ® = knalloc (FEESSHGED . O ;

// mot using a

= kmalloc
6+ X zalloc
7 when I=
s - memset ((T)

0, sizeof(a));

190

2type T;
BTk

1 expression E;
5 00

7~ memset (®; E, sizut(z)ﬂ/

%+ memset(x, E, sizeof (*x))

MR(P)=F p_p

Ri(Rz(P)) = P

|https:

Scalability: Composing 59 rules

How to identify conflicting rules?

Ordering challenge

59! (10 combinations to handle
Performance challenge

Patches are time consuming (-190 minutes)
Maintenance/safety challenge

How to reduce the search space?
Engineering challenge

Linux and Coccinelle are non-negotiable

‘Semantic patches and patches related to collateral evolutions.
Torvalds' repositony:

+ Use UPIO_MEM. 1 (semantic patch)
+ Use resource size. 12345 6 Gemantic paich)

+ Use dev_get_drvdata 1 2 (semantic gatch)

+ use usb_get intdata, usb_setIntdata. 1 2 semanic patch)

ush_endpoint functions. 1234156 78 8.9 10 11 12 (semantc pach) 13 semanti gaich)
+ use DEFINE SHINLOCK. 123455 (semantic patch)

+ use ARRAY_SIZE. 123 4 5 Gemanic paich)

+ use DIV_ROUND_CLOSEST- 1 2 3 4 (semantc satch) 4 (semantc saich)

+ use DIV_ROUND_UP. 1234567 8 (semantc oatch) §9 10 11 12 (semantc patch)

+ use BUG.ON. 1234567 8 Gemanic paich)

(semanic pach)

eq.e1c.12345 678910 11 12 13 Gemantc pac)
(semantic patch)

+ Kzalloc-treewide.patch (semantic paich)

Bug fixing patches.
” cating only one thing 1 2 (semanti match)
12345 6 Gemanic match)

5678 (semantc match)

ER 10 get error code 1 (semanic match)

+ Use ERR_PTR/IS_ERR 10 retrn a flag as a pointer 1 (semantic maich)
+ Remove exceptional

Abstracting rules composition

Looking for fixed points at this scale is “out of the question”
Trade-off. Let p = (¢, y) € (D X X) = P, where

@ : Program — Program is an idempotent rewriting function
- x : Program X Program — B is a postcondition checker @

Assumption: we can manipulate programs

© : Program X Program — A (eg. the aiff command)

@ : Program X A — Program (eg. the patch command)

O: A X A— A (e.g.. a patch concatenation algorithm)

ModeIIing rules composition operators

Extending the state-of-practice with isolated composition
Let p a program, (¢, @,) € @2 two rewriting functions
s P1=¢1(p), Ay =p ©p.andp, = (p), Ay =p, Op
- p'=p Ol 04y

Generalizing & Incfuding postconditions verification

iso : Program x P"
PoApr s pul

Program
Piso =P ® (O, (9(p) ©P)), A2y %P> Piso)

/4

T —— | 17

B. Benni's PhD
2016-2019

[JSEP 2019]

https /g

Empirical validation

Dataset considered for evaluation:

Linux: Randomly sampled 19 versions (1/month)

Coccinelle: rules triggered when running ‘make coccicheck” (35)

Results:

Ordering: Discovered 2 conflicting rules 2 conflicts, 36% cases
Commit.id Rewriter #1 Rewriter #2

Performance: Quicker than sequential 386516832298 alloc_cast memdup

4efe37f4cdef alloc_cast memdup

Maintenance: 2! instead of 35! ue to check b134bd90286d alloc_cast memdup

i i R . . 25a3b2610609 alloc_cast memdup

Engineering: iso-functional tooling bce1a65172d1 alloc_cast memdup

2551a53053de alloc_cast memdup
ev-tools bfd40eaff5ab alloc_cast memdup

Can we [everage this composition model ? punasisiy

AR

+ Challenge the abstraction to other application domains
- Energy-efficiency for smartphone applications

- Container-based deployment of service architectures

android
- Scalability dimensions: Reuse & Ensure
- Empirical validation (22 android app, 11k images)
-+ Android: identify overlapping fixes
- Docker: detect faulty containers (ignored elsewhere) dOC er
[JSEP 2019] [ICSR 2018] [Amadeus Industrial GlobalTech Keynote 2018] »

Modelling & Scaling Composition

(2020-..)

Conclusions & Take-aways

Lessons learned: Scalability matters (201-2020)

-+ Software engineering is all about trade-offs [JOT 20201
. : . [JSEP 2019]
From optimal to usable (but trade-offs = hacking/mundane) [ICSR 2018]

- Scalability as an afterthought is a mistake [SAC 2018]

- Research on composition models:

- Need to address scalability issues, at » dimensions
- eg. performance, maintenance, quality assurance, and reusability
+ Will make the paradigm usable at large-scale
Invited lecturer

ENS Lyon
(2018, 2019)

- Requires theoretical foundations & engineering skill

Funding: NSERC Discovery (145R$), cNrs (-20k5) UCA (

—i
- Familiarize;students to scalability
challenges with alocal loT platform

\ < W
I[UMC 14, Models EduSymp}&

WF LT SMARTCAMPUS

Scalability: Formal properties do matter!

- Challenge: focus on usage by developers

- How to develop operators faster and safer?

- How to improve support for operator's users?

- Modelling properties associated to operators
- Equivalent elements: idempotency

- Operator folding: associativity

o(e

No silver-bullet!

- Avoid useless calls: regularity, identity and absorption
+ Order independence: commutativity

- Co i it P : distributivity

Funding: NSERC Discovery (145R$), 2020-2025 n

Application domain: Source code management lreia

- Team effort to bind together Compilers & Software Engineering

- "Equipe associée" start: s0ks) with ENS Lyon & Inria .
NIVERSITE

@ DE LYON

- Explore two dimensions of composition:
- Charting a large-scale compiler infrastructure (LLvM, -10MLoC, Clang)

- Improving source code merging at the abstract level (s6m-+ GitHub users)

+ SkKills: graph theory (reinharz, compilers (Gonnord, Privat, and SOff. eng. (Mosser)

Ambition: Make git-merge & LLVM great again!

Application domain: Micro-services architectures

- Micro-services are a de facto architectural style in 2021 @
- Starting a show on Netflix composes up to 700 services

- Composition-related challenges: No silver-bullet, no afterthoughts
- Agile requirements composition for traceability

®_ . —®

+ Natural Language Processing (Meurs), Certification (Polacsek, Blay) I~

- Large-scale deployment & configuration variability \ /

+ Polyglot development & Software product lines (Klewerton, Kruger) @ \
1ICSOC, SPLC2020] ®/ ~__ ®

Ambition: Composition in heterogenous systems of systems!

Conclusions & Take-aways

Software Composition is everywhere!

- Research driven by industrial & practical collaborations

- Geosciences (0SEAN-PACA+CNRS, ~140k$)
- Embedded pipelines wisteon, ~115r$)
+ Cyber-physical systems (Datathings technological transfer, ~225kS)

- Software deployment wuca, -150k$) & visualization Uns, ~150k$)

- Research challenges (2020-..)
-+ Scalable composition models are hard to elaborate

- Formal properties impact software developers daily life

Fundamentals of Composition Scalability

- Stop reinventing a squared wheel! .
P gasq Logical Scheduling
Verification

Abstract

+ Abstract the composition expertise
+ Formal definition & tooling
+ Conflicts & Interactions handling

Verification & proofs

Composition
Engine
- Customize for each domain @

Time to consider (scalable) composition as a first class citizen,

Recent composition results (z014-2020)

- Technological transfer

stteopm

- Visteon: Pipeline composition /icse 2019, SAC 20181

+ DataThing: time series composition (x 20) [FGS 2019, SAC 2018]

+ PulseTotem®: Spin-off startup company iseaa zo141

=
- Open-source software i

- Incremental exploration of software ispLc 2020, Icsoc 20201
+ Abstract Composition Engine vor 20201

- SmartCampus reference architecture /umc 2014/

o(é .

https://ace-design.github.io/

Joining McMaster's Department of Computing and Software ® g g ?

+ Faculty of Engineering

+ Strong industrial ecosystem, multidisciplinary collaborations

oo

-+ Software Quality (@ theory of computation) areas of specialization

+ Renowned CS and SE programs
- Departmental expertise
- Digital & Smart Systems research cluster

+ Eg. "safety” of composed systems (emergent behaviours)
+ Teaching: Software engineering

+ Hamilton, Ontario
- Campus! Waterfalls! Great Lakes! Biking! Hiking! Canoeing!

Th

sworkisa team effort

Jinx Dumpling

Serge Dogny
PhD, 09/2021-...

J.-P. Caissy
MSc, 01/2020-..

Benjamin Benni
PhD (2019), MSc (2016)

Ivan Logre
PhD (2017), MSc (2013)

D9 ®

Alexandra Lapointe
PhD, 01/2021-...

Sebastien Bonnieux
PhD (2020)

Glnter Jungbluth
MSc (2018)

2 Alexandre Feugas
E PhD (2014)

Corinne Pulgar
MSc, 09/2021-..

Sami Lazreg
PhD (2020)

Cyril Cecchinel
PhD (2017), MSc (2014)
N\

Eirik Brandtzaeg
MSc (2011)

And all co-authors
& colleagues.

